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Abstract. Nonlinearsi/(2) algebras subtending generalized angular momentum theories are
studied in terms of undeformed generators and bases. We construct their unitary irreducible
representations in such a general context. The liné@) case as well as itg-deformation

are easily recovered as specific examples. Two other physically interesting applications
corresponding to the so-called Higgs and quadratic algebras are also considered. We show
that these two nonlinear algebras can be equipped with a Hopf structure.

1. Introduction

Quantum groups [1] evidently appear as algebras with an infinite set of products of
generators on the right-hand side of their commutation relations. If we limit the order of
such products, we also get particular generalizations of ordinary Lie algebras that we simply
refer to here as nonlinear algebras defined in following section: let us mention in particular
that W-finite algebras [2] belong to that category but also that there are known examples
like the Higgs algebra [3] (containingubic terms) and like the so-callequadratically
nonlinear algebras [4]. Such specific nonlinear algebras have recently been investigated by
Roek [5] and related by Quesne [6] to generalized deformed parafermions [7] which can
be exploited in the study of the spectra of Morse and modifigscRl—Teller Hamiltonians

[8] as well as of parasupersymmetric Hamiltonians [9].

We are interested in some generalizations of the (so important) angular momentum
theory being subtended by the real forms of the complex Lie (Cartan) alggebfa0] to
nonlinear extensions od;. In particular, we plan to study the representations associated
with such nonlinear algebras. This is the first aim of our study. The second is connected
with the possibility, where feasible, of endowing these nonlinear algebras with a Hopf
structure [1]. Consequently, the paper is organized as follows.

In section 2, we study a specific series (admitting only odd powerapolinear s/(2)
algebras subtending generalized angular momentum theories and construct their unitary
irreducible representations. In section 3, we give a generalization of nonlinear algebras
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when the starting point was, (s/(2)). In section 4, we show that the lineai(2) case as

well as itsg-deformation [1] are particular examples of our developments. Some comments
about the Hopf structure of these nonlinear algebras are given in section 5. The specific
cubic context and some comments about the Hopf structure are then considered in section 6.
We also show that there exist other new families of representations when a specific choice of
the diagonal generator is considered. Then, we studyjtiaelratic context in section 7 by
exploiting the above choice although this nonlinear algebra does not belong to the specific
series. Some comments about this quadrdii2) algebra are also given. Finally, section 8

is devoted to general comments and conclusions in connection with other recent proposals.

2. Representation theory of nonlinearsl(2) algebras

In terms of the ladder generato¥s and the diagonal onds, the very well known linear
s1(2) algebra is characterized by the commutation relations [11]

[V, J-]1 =273 (2.2)

[J3, Ji] = £Js (2.2)
and by the Casimir operator

C=3Upd_+ I J)+ I (2.3)

acting on an orthogonal basis denoted as usud| hyn)}. In fact, we have the well known
results

Clj,m)y = j(j +Dlj,m) j=0 3.1 3 .. (2.4)
J3|J,m>=m|J,m) m:—j, _J+1v?]_1v J (25)
Jeljom) =/ Fm)(GEm+1)|j,m+1) (2.6)

which characterize all the unitary irreducible representations of this simple Lie algebra.

Let us consider the algebras that we decide to call nonlinkg@y algebras due to the
nonlinear terms appearing on the right-hand sides of the following commutation relations
(in correspondence with the ones given by equations (2.1) and (2.2)), i.e.

N
[Ji, T 1= B2 07" 2.7)
p=0
[Ja, Jil = 7 (2.8)

where the hat indices help us to distinguish these modified structures with respect to the
algebrasi(2). In fact, let us define a new basis of the algebra subtended.lgnd J; as
follows:

Jo=J. £7C, ) J_=f7(C, J3) J- (2.9)
and
J3 = Js (2.10)

so that we evidently ensure the relations (2.7) and (2.8) for arbitrary funcfivrend £~
in terms of the commuting operato€sand J3 if we require that, on the statg, m), we
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have
G+m(G—m+DfTG,m—-Df (j,m—1)

N
—(=m)GHmADfGm) fTGm) = By 2m)* L, (2.11)
p=0
If f* are real functions of and Js, then hermiticity impliesf* = f.
Let us point out that our choice (2.9) is such that the ladder generators can be seen
as Hermitian conjugate ones and that equation (2.10) leaves the diagonal opgrator
unchanged. Relatively fastidious calculations starting with equation (2.11) lead to the result

N J m
G=mG+m+DfGom [ Gom = WZ”“(Z pr Y r2v+1>
p=0 r=1

r=1
— iﬂ 22p+1 1 .2p+2+ 1 '2p+1+ 1 2p+1 B 2p
= 2 P ml éj > 1 1]
1/2p+1\. 5,0 1(2p+1\ .,
—4< P3 >B2J2p 2+6< P5 )st2p 4_ ..

1 /2p+1 1 1 1/2p+1
—(=1P— B 2 2p+2 & 2p+l B 2p
=D 2p(2p—1> Pl op2" 2" 2\ 1 i

1/2p+1 1/2p+1
+4< P3 )Bzm2p_2—6( P5 >B3m2p—4+_“
1/2p+1
- B,m* 212
+(=1 2p(2p—1) N )) ( )
where By = % By = 3*10, Bz = 4i2 are Bernoulli numbers [12] appearing in this

particular summation of series [12]. By dividing both sides of the above equality by
(j —m)(j +m + 1), the final result can be put in the form

N 22k k r , ]

FrGomfmGom)y = Fo+ Y By (Z D GG+ D) (mOm + 1>)He,<k)) (2.13)
k=1 + r=1 s=0

or, in terms of generators,

N 22k k r
+ — _ S r—s
e s, Js)—ﬂo-i-kz:;ﬁkk +1<;er<k>§c (J3(J3 + 1)) ) (2.14)

In equations (2.13) and (2.14), we have introduced specific functiosdeffined by the
following relations:

k) =1 (2.15)
and, forj =1, 2,..., k—1,

(kD) (241N
() (510

k+1 k k—1
=< 2 )—i—ék1(k)<2j_2)+6k2(k)(2j_4>+"'+€kj(k)-

(2.16)
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In addition, let us also point out that we could rewrite equation (2.14) in the following
form:

N+1 k—1
fHC I fC I =) (Z CH 1 (Js(Js + 1))") (2.17)
k=1 n=0

leading to simple identifications between tleand s-coefficients. In fact, we have

2k

N
2
a=p 4=y P aak) [=23.. N+1 (218)

S k+1

With this last set of information, the corresponding representations are simpler. Indeed, we
get

) N+1 1/2
Jelj.m) = (Z (GG + D) = (m(m + 1>>k)) lj,m+1) (2.19)
k=1
and the commutation relation (2.7) becomes
P AR n Son—2r—1
Jy,J =2 . J5TT 2.20
. d1=23 0 ;(ZrH)s (2.20)

whereR, = %(n — 2) for evenn and R, = %(n — 1) for oddn. We thus relate the- and
B-coefficients in the other way (with respect to equations (2.18)) by

2p+1 k
By =2"% Zak<2k_2p_1) p=0,1,..., N. (2.21)
k=p+1

Up to these choices, we have obtained at this stage some new information on irreducible
representations of the nonlinedx2) algebra for arbitraryv. We have to add more specific
arguments in order to get all the representations as it will appear in what follows.

Now, let us give the explicit expressions of the deformed generatarsAccording to
equations (2.9) and (2.10), we have

) N+41 k-1 1/2
I =, (Z > el (Ja(Js + 1))’) (2.22)
k=1 r=0
and
) N+1k—1 1/2
J_= (Z >l (s + 1))’) J_ (2.23)
k=1 r=0
or
N+1 k k\ 1/2
- C* = (J3(J3+1) )
Jo=1 2.24
\ +(;ak e (2.24)
and
N+1 k k\ 1/2
- Ct — (J3(J3+ 1)
= _ 2.25
/ (;“k C— s+ 1) > (2:29)

Moreover, if we define
N+1

o(x) = Zak xk (2.26)
k=1
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these generators become

s (9O —p(a(Jz+ D)\

= J*( C—Ja(Js+1) ) (2:27)
. (0O —d(Js(Js+ D)\

o ( C— J3(J3+1) ) " (229

and the corresponding Casimir operator is

C=3(4d +7 i +0Us(ls+1) +dUs(ls = 1)) =6(©).  (2:29)

Remark.We can can also write (2.27) and (2.28) as (sed#)@!(2)) case)

i (w( c+(§)2))2—(1ﬂ(13+%))2 " 050
o (e ) ey |
J = <w< C+(%)2) Z_WJSJF%))Z 1/2J_ (2.31)

(Ver () — s by
where

$(x) = y? (x/x + i) -¥2(3)  if 9O =0 (2.32)

The relation between the deformed CasitiandC is given by

C+(w () =v ( C+ (é)z) : (2.33)
Now, if ¢ is bijective, we evidently have
C=¢"0 (2.34)
and
1A _ 7.7 1/2
J, = f+(¢A © - J3A(13 + 1)) (2.35)
C—¢s(J3+1)
1A\ _ 7.07 1/2
J = <¢A ©) AfsA(Js + 1)) i (2.36)
C—¢(s(Jz+1)

From this point of view bijectivey’s are of particular interest. A similar discussion is valid
for the functiony.
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3. A generalization

For equations (2.27) and (2.28), the starting point/{2). One can take, (s/(2)) (which
is itself a nonlinear generalization 6f(2)) as the starting point and generalize that again
by postulating

. N+1 1/2

Jetjon) = (L en(lj+ 2 = @l + 1)) imE D) @)

k=1

ie.

s (O — ¢l Js+ 1D\

= (MG ) 42

. (O —(llJs+ 1D\

= (e ) &3
where

C= XU+ J_Jp) + [ (3.4)
For example, if we choose

b =3+ o (3.5)
we obtain the following commutation relation:

[Js, J-1 = [2J5](L+ BLJa]D. (3.6)
For another choice, we can obtain

[Je, J1=1[12/51l2 (3.7
where,

=20 gec (38)

qi i

One can ultimately even envisage a hierarchy-tifrackets generalizing the right-hand side
of (3.7). A

When one generalizes (2.19) as in (3.1);,(¢=”%) being expressed in terms af,
g*%) of U,(s1(2)), one can implement the standard Hopf structure of the latter (rather
than starting from that of/(2)) to construct/. for product representations. Evidently
the formalism of this section contains the results of the preceding one as limiting cases
(g — 1).

4. The sl(2) and U,(sl(2)) contexts

The nonlinearsi(2) algebras given by equations (2.7) and (2.8) evidently contain the
expected lineas/(2) one as well as itg-deformationi{, (s/(2)). The first one corresponds

to N = 0, so that equations (2.7) withy = 1 and (2.1) become identical while the second
one is readily obtained by taking the limit — oo with the coefficients

2 (logg)?*t
g—qt 2p+ 1!
1 (6)2p+1
~ sinhs (2p + 1)!

B, = p=01,... 4.1)

q = expé. (4.2)
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If, in the linear case, we evidently have
frGmf=G,m =1 ff=r=1 (4.3)
ensuring that
Ji=U4 Js=Js (4.4)
we point out in theg-deformation that [13]
[ —mllj+m+1]

(i (7 = 4.5

STGm) (. m) GomGtm+l) (4.5)
where as usual

[ﬂz%gﬁ? (4.6)

By developing the right-hand side of (4.5), it is not difficult to show that it coincides with
our expression (2.13) (for example) with the coefficients (4.1). This corresponds to the
equality

1 cosh(8(2j + 1)) — cosHs(2m + 1))
(G—m(@G+m+1 2sintt 8
S 00 22k+1§2k+1 k

=5t ; AR ; ;uu + 1) mm+ 1) e(k)  (4.7)

where the corresponding functioagk) are given by (2.15) and (2.16).
Let us also mention that the quantum algebids/(2)) corresponds to the choice of
the following bijective function introduced by (2.26):

¢(J3(J3+ 1) =[A][Jz+1] ¢(C) = [\/Cﬁ— ;H C+1+§} (4.8)

with the bracket (4.6) so that in this context the generators (2.27) and (2.28) become

2 1/2
[Ver @] -l 41
=, ; (4.9)
(Ver @) - (a+ 3y
P 1/2
[Ver @7 - 47
- J_. (4.10)

2
(Ve @) - (e
The corresponding Casimir operator is then given by

é:[/c+@f—;}[c+(9?+ﬂ (4.11)

Ve 3 = [ Ve+ @7 @12
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and, consequently,

o+ 0= 3 el o) 0

These relations finally lead to
2 1/2
(; arcsinh(Jr[;]Z sinh8>> — (st 12
Ty = 2 (4.14)
(Ve+13F) ~tha+ 3
2 1/2
(3 avcsinn( -+ 3] sinna) ) - -+ 37

Jo=0Up"= (4.15)

2
(VE+IEF) -+ 3
ensuring that we have the expected commutation relation
[Je, J_] = [274]. (4.16)

It has been shown by Curtrigbt al [13] that, from the well knowr(2)-cocommutative
coproduct and (4.9)—(4.10), it is possible to charactetizési(2)) by a cocommutative
coproduct. Moreover, by the inverse map (4.14)—(4.15) and the non-cocommutative
coproduct oftf,(sI(2)) denoted byA,, we can also characterize the lined(2) by a
non-cocommutative one.

We do not go further into these directions due to our specific interefhibe values
of N # 0 and more particularly inv = 1, the first non-trivial value which has a direct
connection with already studied physical contexts [14].

5. Hopf structure of nonlinear algebras

In what follows, we start by enlarging the term of enveloping algebra/ &) to include
square roots. Then, exploiting the well known fact [1] that the undeformed generators
and J; admit a Hopf structure with the well known coproduct, counit and antipode given
for example in thecocommutative caseespectively by

0] AJ)=71®14+1Q0 Js (5.1)
A3 =h®1+1® /3 (5.2)
leading to
AC)=CR®1+1C+ 1, ®J_+J-QJ +2/3® J3 (5.3)
(ih) e(Jr) =¢e(J3) =¢(C) =0 (5.4)
(iii) S(UJy) = —Js S(J3) = —Js S(C)=C (5.5)
we can deduce that our deformed generafgrand J3 also satisfy the Hopf axioms, i.e. [1]:
(id® MDA =(A®id) A (5.6)
mid@HA=m(SQid)A=ioe (5.7)

([d®e)A =(¢®id)A =id. (5.8)
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Now, the coproduct of our deformed generators is given by
AU = [T(A0), BJs) A () (5.9)
AT = DU f(AC), AUJ3)) (5.10)

it is not difficult to test that this coproduct is cocommutative, the same way of reasoning
applying to the counit and antipode.

Let us remark that the right-hand sides of (5.9) and (5.10) are just an expansion of
the generatord. and J3. If the function¢ (v) is bijective, equations (2.35)—(2.36), the
Hopf structurecan be writtenusing only the deformedgenerators/y and J5. If we take
A, given by Curtright et al [13] we can endow the nonlinear algepras(bijective) by a
non-cocommutative coproduct.

6. The cubic sl(2) algebra

Let us now consider th&/ = 1-context leading, in (2.7), at most to tleebic power in

the diagonal generator. This corresponds in particular to the nonlinear Higgs algebra [3],
a symmetry one for the harmonic oscillator and the Kepler problems in a two-dimensional
curved space. From (2.13), we immediately get

FrGm) G, m) = Bo+2B1(j(j + 1) +m(m + 1)) (6.1)

leading to the Higgs algebra whefy = 1, 81 = 8. Then, we have the commutation
relations

[T, J.]=2J3+88J3 (6.2)
[J3, Ju] = +J.. (6.3)
By requiring that the ladder operators are Hermitian conjugate to each other, we have to fix
FEGom) = (14 2B(jG + D +m0m + 1)) (6.4)
so that the unitary irreducible representations of the Higgs algebra are given by
Jelismy = (G FmGEm+D 1428/ + D +mm £ D) j,m+1)  (6.5)
Jalj.m) = mlj, m) (6.6)

where the parametet is constrained by ensuring

1+286((j+)+mm=*1) >0 (6.7)
or
1 o
B = ~ 42 Vi (#0. (6.8)

Such unitary irreducible representations (6.5) and (6.6) are associated with explicit forms
of the slg(2)-nonlinear generators expressed in terms of the undefosii@dones. In fact,
we formally claim that, according to (2.9) and (6.5), we have

Y2 =0, I, Js) (6.9)

Ty =Ty (1+28(C+ Js(Js + D))

and

1/2

Jo=(1+2B(C+ s+ D)) = (ST (6.10)



3084 B Abdesselam et al

while the third oneJ; is unchanged (see equation (2.10)). Here we point out that the
corresponding-function (2.26) is not bijective and the corresponding Hopf structure cannot
be written using oupB-generators.

Let us now insist on an interesting property which, to our knowledge, seems not yet to
have been exploited, i.e. on a possible shift of the diagonal generator spectrum expressed
in terms of a (real scalar) parameter called hereafteSo, let us propose a modification
of relation (6.6) in the following way:

Jalj,m)y = (m +y)|j,m). (6.11)

If it is evident that in the usual angular momentum theory such a shift has no physical
meaning; it is non-trivial to show that, ingdeformed one, nothing more happens when
is not a root of unity. Indeed, if we require the commutation relation

[J+, J-] =[274] (6.12)
with the bracket (4.6) and if we require

Jiljom)y =~/ f(j,m) |j,m+1) (6.13)

Jiljom)y =+ f(j,m—=1)|j,m—1) (6.14)
when

Jalj,m) = (m+y)lj,m) (6.15)
it is possible to show that

1 ; .

f(], m) — (q - q71)2 (q—21+2y—1 + q2]—2y+1 _ q2m+2;/+l _ q—2m—2y—l) ) (616)
Then, due to the fact that, from (6.13), we have

fG. =0 (6.17)
from (6.16) we get

fG. ) =[-2vl2j+1]=0 (6.18)

asking for the annulation of the paramejer We thus conclude that the shift (6.15) does
not allow us to characterize new representation&/ as/(2)).

The study of the Higgs algebra in that direction is richer and non-zero valugs of
can be exploited in order to select new unitary irreducible representations of this cubic
sI(2) algebra. In order to establish such a result, let us consider equation (6.11) within
the Higgs context characterized by the commutation relations (6.2) and (6.3). The action
of the ladder operatord, on the basis leads tp-dependentf*-functions. In fact, in
correspondence with equations (6.5), here we get

Jolj,m) = ((j—m)(j+m+1+2y) (1+28(j(j + 1) +m(m + 1)

1/2
+ 2y Hm+149))) Lm+1) (6.19)

and

Foljom) = (G =m+DG +m+2y) A+ 2B +D +mm — D)

1/2
+2y(j+m+y)))) lj,m—1). (6.20)
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By exploiting the property that

J_1j.—j)=0 (6.21)
we get the constraint
2y2j+D) (1+48G G+ D +y?) =0 (6.22)

showing that, besides our preceding context{ 0), there are other possibilities related to
non-zeroy values issued from the equation

1 L
=g PRI D). (6.23)
A simple discussion of its roots leads to time families of new representations characterized
respectively by

14

1 . 12
v =5 (B—47iG+D)" (6.24)
or
1 . 1/2
Y="2 (—B—482j(j +1)" (6.25)
both values being constrained by the deformation parangeterch that
1 1
_ S 6.26
4iG+0 TS T a1 (6.20)

Let us insist on the fact that these representations are typical of the deformation
characterizing the Higgs algebra: they do not exist wAea 0. Moreover, such a method
suggests its application to other nonlinea¢2) algebras and here we want to look at its
impact on an interesting quadratic one [4] in the following section.

Just as the simplest example, let us fix= % (corresponding to the fundamental
representation in the conventional(2) case). We evidently conclude that, if ogr
parameter is constrained (according to (6.26)) by

—3<B<—; (6.27)
we getthree families of representations corresponding to
1
y =y (-8 — 362" and y=0. (6.28)

According to (6.8) whery = 0, we haveg > —1 and we point out that, i > 211 or if
-1<8< —%, we get only one family while, evidently, i8 < —1, no representation is
admissible.

As a last remark, let us notice that the modification effectively introduced in (6.11)
through they-parameter does not affect our conclusions regarding the Hopf structure of the
Higgs algebra.

7. The quadratic sl(2) algebra

Another nonlinearsi(2) algebra is thequadratic one [4] characterized by the following
commutation relations depending on the (real scalar) parameter

[, 19 = 278 + da(JS)? (7.1)
[J, J @] = +J@, (7.2)
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It has already been exploited [4] in connection with Yang—Mills-type gauge theories and
with fundamental quantum mechanical problems [5, 6]. In particular, its representation
theory has already been investigated [5] for the lowest eigenvalues of the Casimir operator.

Let us return to this representation theory when combined with the demand
corresponding to (6.11) of the preceding section, i.e.

I21j,my = (m 4 )| j, m). (7.3)

Here the ladder operatoxiét"‘) also act on the basis and determindependent *-functions
that can be calculated. They are given in the following relations:

J-(ra)U,m) = ((j—m)(j—i—m—l—l—i—Zy +a(%j2+%jm

1/2
+ 3P Ay +dym £ 2j £ om+ a2 1y +2))lim+ D) (7.4)
and
IO, my = ((j—m+1)(j+m+2y +a(4j2+4jm)

+ %m2+4yj+4ym+%j—%m+4y2)))1/2|j,m—1). (7.5)
Once again, the condition
JENj,=j)=0 (7.6)
leads to the constraint
y=4]‘;(—1+\/1—]£36j(j+1)a2> (7.7)
when
3

“S 2@+ D) (78)

Such unitary irreducible representations (7.3)—(7.8) are typical of the deformation and are
associated with the following forms of generators explicitly given in terms of the undeformed
sl(2) ones:

1
Jéa):‘ls—i—ki 1-*“2(/' (79)

1/2

IO =g, (g ¢ 203+ 1)+ W) (7.10)
1/2
7@ (g a (2J3+1) + W) J_. (7.11)

Through knowledge of thel/(2)-coproduct, counit and antipode given by (5.1)—(5.8), we
can thus provide the quadratic algebra (7.1) and (7.2) with a Hopf structure by defining

1 1 16
AU = A(Js) — o e+ E\/l® 1-5 a2 20 (7.12)

1/2
ALY = Ay) (g aQA(J)+101) + \/1® 1-%a2A (C)) (7.13)
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1/2

AJY) = (g a 24 (J3) +1®1)+\/1®1— 136052A(C)) A(J2) (7.14)

(IS =€) =0 (7.15)
@y _ gt 1) 16,

SUs™) = —Js = ot 4y [1= FakC (7.16)

1/2
S = — (ga(—zfg +1)+,/1— 13%[20) Jy (7.17)
1/2
SUYy =—J_ (ga(—zjg +1)+,/1- 13%20) (7.18)

as was the case for the cubic algebra (6.2) and (6.3) but with the definitions (5.1)—(5.2). We
note that the right-hand sides of (7.12)—(7.18) cannot be written using only the generators
J& and J .

8. Conclusions and comments

We have developed the representation theory associated neitlinear s/(2) algebras
characterized by the structure relations (2.7) and (2.8) containing, in particular, the linear
s1(2) algebra as well as itg-deformation{, (s/(2)). Moreover, we have more specifically
visited thecubic s/(2) algebra in order to gedll its unitary irreducible representations and

to show that it is endowed in our formalism with a Hopf structure, the corresponding results
also being presented for tlpiadratic s/(2) algebra. Such a study mainly takes advantage
of the fact that we can express the generators of the nonlinear algebras in terms of the old
(undeformed)s/(2) ones and that thel/(2) algebra is endowed with a well known Hopf
structure. These properties allow us to extend our considerations for arbitreryhe odd

case (developed in section 2) and are also valid in principle for the even context after the
study of theN = 2 case (developed in section 7).

From the representation point of view, our results generalize to arbijrarythose
obtained by Rdek [5]. They also include others obtained by Zhedanov [14], Feng Pan [15]
and Bonatsost al [16].

From the point of view of Hopf structures associated with our developments, many
connections with recent studies can be pointed out. An interesting property discussed in
section 5 is that concerning the cocommutativity or non-cocommutativity of the already
known coproducts. We have shown that, in some particular cases, the nonlinear algebra
can be equipped with a consistent Hopf structure (i.e. the corresponding coproduct being
expressed in terms ofleformed generators). Moreover, let us mention that there is
also a third possibility by exploiting our recent proposal for a new deformed structure
uj(sl(Z)) algebra using a real para-Grassmannian variafter].

All these properties have to be carefully examined and we plan to come back to these in
the future. Let us finally add that our results, in particular, confirm those recently obtained
by Quesne and Vansteenkiste [18], showing that if we ask for a deformed coproduct in
terms of deformed generators, only the already well known ones are possible. We have
obtained new ones due to the fact that we have expressettfoamedgenerators (in each
context) in terms of the undeformed ones.
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